

SYLLABUS

1. Information on the study programme

it into interest on the state, programme			
1.1. Higher education institution	West University of Timisoara		
1.2. Faculty	Mathematics and Computer Science		
1.3. Department	Computer Science		
1.4. Study program field	Computer Science		
1.5. Study cycle	PhD		
1.6. Study programme / Qualification	Doctoral School in Mathematics and Computer Science/		
	Computer Science		

2. Information on the course

2.1. Course title Topics of Machine Learning							
2.2. Lecture instructo	or		Daniela Zaharie				
2.3. Seminar / laboratory instructor							
2.4. Study year	1	2.5. Semester	1	2.6. Examination type		2.7. Course type	

3. Estimated study time (number of hours per semester)

3.1. Attendance hours per week	1	out of which: 3.2 lecture	1	3.3. seminar / laboratory	-
3.4. Attendance hours per semeste	r 12	out of which: 3.5	12	3.6. seminar /	0
		lecture		laboratory	
Distribution of the allocated am	Distribution of the allocated amount of time*				
Study of literature, course handbo	ok and perso	nal notes			80
Supplementary documentation at library or using electronic repositories					54
Preparing for laboratories, homework, reports etc.					40
Exams					6
Tutoring					8
Other activities					0
3.7. Total number of hours of	188				•
individual study					
3.8. Total number of hours per	200				
semester					
3.9. Number of credits (ECTS)	3.9. Number of credits (ECTS) 8				

4. Prerequisites (if it is the case)

4.1. curriculum	Artificial Intelligence, Numerical Calculus, Programming,
	Probability and Statistics, Operations Research
4.2. competences	Knowledge of numerical algorithms, statistics, artificial intelligence,
	optimization and programming abilities

5. Requirements (if it is the case)

5.1. for the lecture	Lecture room with whiteboard and projector – support materials available on Google Classroom (code i614dv6)
5.2. for the seminar / laboratory/ individual activity	

6. Specific acquired competences

o: Specific acquirea competence	
Professional competencies	Understanding the main concepts in machine learning
	• Ability to identify the machine learning methods for a specific
	problem
	Ability to implement and validate a machine learning
	algorithm
	Ability to analyze and compare machine learning methods
Transversal competencies	Ability to search for relevant literature
_	Ability to conduct research activity and to prepare reports on a
	given topic
	Team work ability

7. Course objectives

7.1. General objective	Providing knowledge on constructing data-driven models, on learning algorithms, and on related optimization methods
7.2. Specific objectives	 (1) to present computational aspects of machine learning; (2) to identify the techniques appropriate to a given problem; (3) to use software tools that are specific for machine learning; (4) to implement efficient and scalable learning algorithms;

8. Content

8.1. Lecture	Teaching methods	Remarks, details
L1-2. Reminder on mathematical tools and basics of	Discourse, conversation,	[4] - ch 2,3,5
Machine Learning (supervised and unsupervised	illustration by examples	[6], [1] - ch 9, [2] –
learning models).		ch 2, [3] – ch
		2,3,4,5,6, 14
L3-4. Ensemble Models. Bagging. Boosting.	Discourse, conversation,	[3] - ch 8,9,10, 15,16
Stacking.	illustration by examples	
L7-8. Deep Learning Models. Convolutional Neural	Discourse, conversation,	[4] – ch 6-12
Networks. Autoencoders. Attention Mechanisms.	illustration by examples	[5]
Generative Adversarial Networks.		
L9-10. Recurrent Neural Networks. Graph Neural	Discourse, conversation,	
Networks	illustration by examples	
L11-12. Reinforcement Learning and Deep	Discourse, conversation,	[1] – ch 11, [7], [8]
Reinforcement Learning. Hyper-parameter	illustration by examples	
optimization. Neural architecture search.		

Recommended literature

- 1. S. Marsland, Machine Learning. An Algorithmic Approach, Chapman & Hall, 2015
- 2. K.P. Murphy, Machine Learning. A Probabilistic Perspective, MIT Press, 2012

- 3. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer, 2017
- 4. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016
- 5. A. Zhang, Z.C. Lipton, M. Li, A.J. Smola, Dive into Deep Learning, 2020
- 6. J. Brownlee; Basics of Linear Algebra for Machine Learning, 2018
- 7. S. Luke: Essentials of Metaheuristics, Lulu, second edition, 2013, available for free at http://cs.gmu.edu/~sean/book/metaheuristics/
- 8. J. Brownlee: Clever Algorithms. Nature-inspired Programming Recipes, 2011, available at http://www.CleverAlgorithms.com
- 9. J. Zhou et al., Graph neural networks: A review of methods and applications, AI Open, Volume 1, 2020, Pages 57-81, https://doi.org/10.1016/j.aiopen.2021.01.001
- 10. V. Francois-Lavet et al, An Introduction to Deep Reinforcement Learning, 2018, https://arxiv.org/pdf/1811.12560.pdf
- 11. Rick Muller, A crash course in Python for scientists, https://nbviewer.jupyter.org/gist/rpmuller/5920182
- 12. A. Muller, S. Guido, Introduction to Machine Learning with Python, O'Reilly, 2016
- 13. Scikit-learn: Machine Learning in Python, https://scikit-learn.org/stable/
- 14. TensorFlow https://github.com/tensorflow/tensorflow
- 15. Keras https://keras.io/guides/
- 16. PyTorch https://pytorch.org/

8.2. Seminar / laboratory	Teaching methods	Remarks, details
Recommended literature:		
1.		

9. Correlations between the content of the course and the requirements of the professional field and relevant employers.

The content covers recent topics in Machine Learning

10. Evaluation

101 D / tildtiloll			
Activity	10.1. Assessment criteria	10.2. Assessment	10.3. Weight in
		methods	the final mark
10.4. Lecture	 Ability to solve a real-world problem using a machine learning method Usage of software tools and implementation of machine learning 	Project presentation (report, software implementation, oral presentation)	100%
	algorithms		
10.5. Seminar / laboratory			
10.6 Minimum nood	ad manfarmanaa fan massina		<u> </u>
10.0. Millimum need	ed performance for passing		

- Knowledge of the main concepts used in machine learning and understanding of the way in which machine learning methods can be used in practice
- Ability to identify the machine learning model which is appropriate for solving a real-world problem.
- Implementation of at least one machine learning algorithm (by using specific software tools).

Date of completion 28.09.2023

Signature (lecture instructor) prof.dr. Daniela Zaharie

Signature (seminar instructor)

Date of approval

Signature (director of the department/ doctoral school)